3.390 \(\int \frac {(c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=143 \[ -\frac {4 c^3 \cos (e+f x) \log (\sin (e+f x)+1)}{a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {2 c^2 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a \sin (e+f x)+a}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{f (a \sin (e+f x)+a)^{3/2}} \]

[Out]

-c*cos(f*x+e)*(c-c*sin(f*x+e))^(3/2)/f/(a+a*sin(f*x+e))^(3/2)-4*c^3*cos(f*x+e)*ln(1+sin(f*x+e))/a/f/(a+a*sin(f
*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)-2*c^2*cos(f*x+e)*(c-c*sin(f*x+e))^(1/2)/a/f/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2739, 2740, 2737, 2667, 31} \[ -\frac {2 c^2 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a \sin (e+f x)+a}}-\frac {4 c^3 \cos (e+f x) \log (\sin (e+f x)+1)}{a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{f (a \sin (e+f x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(c - c*Sin[e + f*x])^(5/2)/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

(-4*c^3*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (2*c^2*C
os[e + f*x]*Sqrt[c - c*Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]]) - (c*Cos[e + f*x]*(c - c*Sin[e + f*x])^(3
/2))/(f*(a + a*Sin[e + f*x])^(3/2))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)), x] - Dist[(b*(2*m - 1)
)/(d*(2*n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && G
tQ[2*m + n + 1, 0])

Rule 2740

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(m + n)), x] + Dist[(a*(2*m - 1))/(m
 + n), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m])
 &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rubi steps

\begin {align*} \int \frac {(c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^{3/2}} \, dx &=-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{f (a+a \sin (e+f x))^{3/2}}-\frac {(2 c) \int \frac {(c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a}\\ &=-\frac {2 c^2 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{f (a+a \sin (e+f x))^{3/2}}-\frac {\left (4 c^2\right ) \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a}\\ &=-\frac {2 c^2 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{f (a+a \sin (e+f x))^{3/2}}-\frac {\left (4 c^3 \cos (e+f x)\right ) \int \frac {\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=-\frac {2 c^2 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{f (a+a \sin (e+f x))^{3/2}}-\frac {\left (4 c^3 \cos (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{a+x} \, dx,x,a \sin (e+f x)\right )}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=-\frac {4 c^3 \cos (e+f x) \log (1+\sin (e+f x))}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {2 c^2 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{f (a+a \sin (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.77, size = 153, normalized size = 1.07 \[ -\frac {c^2 \sqrt {c-c \sin (e+f x)} \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos (2 (e+f x))+16 \log \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )+2 \sin (e+f x) \left (8 \log \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )-1\right )+7\right )}{2 f (a (\sin (e+f x)+1))^{3/2} \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(c - c*Sin[e + f*x])^(5/2)/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

-1/2*(c^2*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sqrt[c - c*Sin[e + f*x]]*(7 + Cos[2*(e + f*x)] + 16*Log[Cos[(e
 + f*x)/2] + Sin[(e + f*x)/2]] + 2*(-1 + 8*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]])*Sin[e + f*x]))/(f*(Cos[(e
 + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^(3/2))

________________________________________________________________________________________

fricas [F]  time = 0.95, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (c^{2} \cos \left (f x + e\right )^{2} + 2 \, c^{2} \sin \left (f x + e\right ) - 2 \, c^{2}\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \sin \left (f x + e\right ) - 2 \, a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral((c^2*cos(f*x + e)^2 + 2*c^2*sin(f*x + e) - 2*c^2)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/
(a^2*cos(f*x + e)^2 - 2*a^2*sin(f*x + e) - 2*a^2), x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.27, size = 446, normalized size = 3.12 \[ \frac {\left (\left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )+4 \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )-8 \sin \left (f x +e \right ) \cos \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-\left (\cos ^{3}\left (f x +e \right )\right )+4 \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-8 \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+5 \sin \left (f x +e \right ) \cos \left (f x +e \right )-8 \sin \left (f x +e \right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )+16 \sin \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+6 \left (\cos ^{2}\left (f x +e \right )\right )+4 \cos \left (f x +e \right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-8 \cos \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-6 \sin \left (f x +e \right )+\cos \left (f x +e \right )-8 \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )+16 \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-6\right ) \left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {5}{2}}}{f \left (\cos ^{3}\left (f x +e \right )+\left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-3 \left (\cos ^{2}\left (f x +e \right )\right )+2 \sin \left (f x +e \right ) \cos \left (f x +e \right )-2 \cos \left (f x +e \right )-4 \sin \left (f x +e \right )+4\right ) \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(3/2),x)

[Out]

1/f*(cos(f*x+e)^2*sin(f*x+e)+4*ln(2/(cos(f*x+e)+1))*sin(f*x+e)*cos(f*x+e)-8*sin(f*x+e)*cos(f*x+e)*ln(-(-1+cos(
f*x+e)-sin(f*x+e))/sin(f*x+e))-cos(f*x+e)^3+4*cos(f*x+e)^2*ln(2/(cos(f*x+e)+1))-8*cos(f*x+e)^2*ln(-(-1+cos(f*x
+e)-sin(f*x+e))/sin(f*x+e))+5*sin(f*x+e)*cos(f*x+e)-8*sin(f*x+e)*ln(2/(cos(f*x+e)+1))+16*sin(f*x+e)*ln(-(-1+co
s(f*x+e)-sin(f*x+e))/sin(f*x+e))+6*cos(f*x+e)^2+4*cos(f*x+e)*ln(2/(cos(f*x+e)+1))-8*cos(f*x+e)*ln(-(-1+cos(f*x
+e)-sin(f*x+e))/sin(f*x+e))-6*sin(f*x+e)+cos(f*x+e)-8*ln(2/(cos(f*x+e)+1))+16*ln(-(-1+cos(f*x+e)-sin(f*x+e))/s
in(f*x+e))-6)*(-c*(sin(f*x+e)-1))^(5/2)/(cos(f*x+e)^3+cos(f*x+e)^2*sin(f*x+e)-3*cos(f*x+e)^2+2*sin(f*x+e)*cos(
f*x+e)-2*cos(f*x+e)-4*sin(f*x+e)+4)/(a*(1+sin(f*x+e)))^(3/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((-c*sin(f*x + e) + c)^(5/2)/(a*sin(f*x + e) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c*sin(e + f*x))^(5/2)/(a + a*sin(e + f*x))^(3/2),x)

[Out]

int((c - c*sin(e + f*x))^(5/2)/(a + a*sin(e + f*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))**(5/2)/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________